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Abstract

If it is possible to interpret an image as a projection of rectangular forms, there
is a strong tendency for people to do so. In effect, a mathematical basis for a
vector space appropriate to the world, rather than to the image, is selected. A
computational solution to this problem is presented. It works by backprojecting
image features into three-dimensional space, thereby generating (potentially) all
possible interpretations, and by selecting those which are maximally orthogonal.
In general, two solutions that correspond to perceptual reversals are found. The
problemn of choosing one of these is related to the knowledge of verticality. A
measure of consistency of image features with a hypothetical solution is defined. In
conclusion, the model supports an information-theortic interpretation of the Gestalt

view of perception.
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1. Introduction

Why do we see the pattern of lines in Figure 1 as a right-angled corner? First, we
must recognize that this is an illusion. (Let’s call it the “right-angle illusion.”)
There is no strict, logical reason to interpret this figure in such a way: there
are infinitely many three-dimensional spatial configurations of line segments that
could have “explained” it. Nevertheless, we do see it in a special way — thus,
we experience an illusion. Is it possible to understand this from a computational
point-of-view?

The right-angle illusion does not depend on the three lines meeting at a common
vertex. The pattern in Iigure 2 evokes a comparable impression and it has no
common vertex. The illusion is strengthened by rotating the pattern so that one
line can be seen as vertical and the others as horizontal. This can be checked
by rotating Figure 2 ninety degrees. Does the illusion still seem as vivid? On
the other hand, more complex patterns, such as Figure 3, do not necessarily lead
to right-angled interpretations, but, in these cases, the viewer is given additional
constraining information beyond three line segments. If three line segments form
two very acute angles, such as in Figure 4, they will not be seen as right-angled,
but then no such interpretation is geometrically possible.

In summary, it seems that, in the absence of additional information, three non-
colinear line segments will be seen as perpendicular lines in space, if such an in-
terpretation is possible. There is strong experimental evidence for this hypothesis.
Attneave and Frost [1] found that the perceived orientations of lines were highly
predictable from hypothetical orientations implied by right-angled interpretations.
Perkins [2] tested the ability to discriminate between right-angled and non-right-
angled forms. He found that when an image could be explained by a right-angled
interpretation it would almost always be perceived in that way.

At first, one might think the right-angle illusions too sparse to be meaningful.
They contain so little information. Could they ever compare to real visual expe-
rience, with its abundance of data? Consider the familiar Ames-room illusion (3]
{(Figure 5). A weird, trapezoidal room is contrived to look normal (i.e., rectangular)
from a particular point-of-view. Objects in the room are seen incorrectly: a man
on one side of the room appears to be a midget, while another on the opposite side
appears to be a giant. The Ames room illusion and the right-angle illusion have
one critical point in common: in both cases, rectilinear perceptions are constructed
from too little evidence. In the Ames room, furthermore, the effect is so strong
that it dominates other important information for depth perception (such as size
constancy). In an effort to make the distorted room look normal, our perception
creates an incorrect geometrical interpretation that implies incorrect metric rela-
tions between objects. In effect, we perceive the space in which the room and the
objects exist, rather than perceiving the room and the objects in isolation.

In this sense, the right-angle illusion is simply a minimal case of the Ames room.
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Figure 1: A Right-Angle Illusion

~— _
/

Figure 2: A Common Vertex is not Required

Figure 3: A Tetrahedron

Figure 4: A Pattern that Does Not Admit a Right-Angled Interpretation

The difference between the two is that the Ames room contains abundant infor-
mation for a rectilinear interpretation, whereas a pattern of three line segments
contains the bare minimum. Any three mutually orthogonal lines from the Ames
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room will produce an acceptable right-angle illusion, and, furthemore, all these illu-
sions will be consistent in the sense of aligning with the natural coordinate system
of the (imagined) room.

There are two reasons to be interested in this problem. First, a solution might
suggest fundamental principles of perception. Human perception is an odd, com-
plex, but remarkably consistent and efficient process. It “reasons” from incomplete
evidence and almost never makes a serious error. Understanding this peculiar (and
awesome) ability is the central task of vision research [4]. A second, pragmatic
reason is that these patterns are quite common in images of natural scenes (see
Figure 6). An algorithm that could make sense of them could contribute a basic
capability to a larger machine vision system.

An early attack on a similar problem was directed at the so-called “blocks world.”
(See Mackworth [5] for a good summary of this line of research.) In a paper that
pioneered the field of scene analysis, Roberts described a system for recognizing a
small collection of simple, generic polyhedral shapes [6]. Whereas Roberts’ meth-
ods produced complete metric descriptions of scenes, the blocks-world work that
followed was aimed at segmentation and qualitative description. The methods were
fundamentally syntactic and viewed the problem of blocks-world interpretation as
a matter of parsing line drawings into allowable configurations of line and vertex
types. The simplification of orthographic projection was introduced, and the effects
of perspective were considered irrelevant. To the extent that metric constraints were
used [7], [8], they were relatively weak and did not generalize in a straightforward
way to perspective.

The approach presented here is quite different. A right-angle illusion, or a more
complex image of an Ames room, or a blocks-world scene, or a natural scene such as
Figure 6, imply certain interpretations for geomefrical reasons alone. Specifically,
intepretations that are in some sense “orthogonal” are preferred. A method for
finding such interpretations for right-angle illusions will be presented. The approach
is to seek a three-dimensional description that simultaneously accounts for the two-
dimensional figure and the three-dimensional phenomenal perception. In contrast
to the blocks-world results, the method is as easily stated for perspective as for
orthography, and produces quantitative answers. It has a simple mathematical
representation and computer implementation.
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2. The Computational Model

In this section a formal mathematical model will be presented as a computa-
tional explanation of the right-angle illusion. The model consists of a method for
constructing interpretations that are orthogonal and that are in the form of triplets
of unit vectors. In essence, the interpretation constructs an alternative basis for
the perceived space surrounding the viewer.

The best way to think of the method is as follows:

e A basis has six degrees of freedom {two degrees of freedom for each basis
vector).

o Each line supplies one constraint. That is, each line constrains one of the basis
vectors to a one-parameter family of vectors.

¢ The space of possible bases, therefore, is three-dimensional.

o The optimum basis is the one that is “most orthogonal.” There will be two of
these, in general.

2.1. The Most Orthogonal Basis

A system of three nonparallel, noncoplanar lines (orthogonal or not) defines a
basis for a three-dimensional vector space. The goal is to find the basis that
simultaneously is “most orthogonal” and is consistent with (i.e., explains) the two-
dimensional pattern. This requires two elements: (1) a way to represent and
generate the set of possible bases, and (2) a precise definition of the intuitive notion
of “most orthiogonal.”

Let us call a pattern of three noncollinear, two-dimensional line segments (sucli as
those shown in Figures 1 and 2) a configuration. We are not concerned with the
length or the endpoints of the line segments. All collinear segments are considered
identical. A configuration is assumed to be the result of a perspective projection of
three lines in three-dimensional space (Figure 7). We will call any three such lines
that produce a configuration an admissible solution to the configuration. Figure
7 illustrates how a configuration constrains the set of admissible solutions: the three
lines of an admissible solution are constrained to lie in three planes determined by
the line segments in the configuration. These planes are called interpretation
planes. A configuration therefore can be characterized by the unit normals of
three interpretation planes: {¢,,d,, ¢;).

Clearly, the distances of the lines from the viewer are irrelevant. The lines are
only required to have certain orientations and to lie in certain interpretation planes.
We therefore consider all admissible solutions of a particular configuration consist-
ing of lines of the same orientation to be equivalent. A class of equivalent admis-
sible solutions defines an admissible basis. The basis consists of three unit vectors
rooted at the origin (the center of projection), lying in the interpretation planes,
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Figure 7: Admissible Solutions
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and parallel to the respective lines in the admissible solutions. These vectors can
be generated in the standard, viewer-centered coordinate system. (This coordinate
system is chosen such that the origin is at the projection point; the z, y, and z axes
are in the directions right, up, and forward with respect to the observer; and the
image plane is the plane z = 1. ')

Let the three basis vectors be denoted by e,, es, and e;. Remember that e; lies in
&y, etc. We can write a basis vector e in ¢ as a function of a scalar 6; for example,
e;(0) is in plane ¢; and at angle # from the plane z = 0 (see Figure 8). The algebra
for deriving this function is straightforward but somewhat tedious (see appendix).

We can now represent the set of admissible bases consistent with a configuration

(¢h ¢21 ¢3):
S = {[61(91),92(02),63(93)1 =T < 91, 02, 63 S ﬂ'}

Generating elements of this set is simply a matter of generating and substituting
values for 4y, 6, and #;.

The “orthogonality” of an admissible solution can be stated in a natural way as

a triple product:
V=e; (e Xey)

This equation gives the volume of a parallelepiped associated with the three basis
vectors (Figure 9). It is sometimes called the box product. The triple product has
a maximum (or minimum) value of 1 (or —1) only when the vectors constitute an
orthogonal basis. In the first case they form a left-handed basis, and in the second
case a right-handed one. 2 The triple product has a value zero only when the three
basis vectors are coplanar (i.e., linearly dependent).

We can find the most orthogonal basis by searching the three-dimensional space
of admissible solutions for those with maximum or minimum V. In practice, there
seem to be a unique minimum and maximum when an orthogonal solution is possi-
ble, and these extrema can be reached by the method of steepest ascent (or descent)
from an arbitrary starting position. There is currently no proof of these conjec-
tures, but they have held true for many different examples.

Figure 10 shows the starting point (6; = §, = 0; = 0; i.e., the flat parallelepiped
lying in the image plane), two intermediate solutions, and the final, optimal solution.
The figures are produced by constructing parallelepipeds from the bases, centering
them at the point (0,0,3} in the viewer coordinate system, and projecting them
into the image plane with hidden-line removal. The initial parallelepiped {shown
in (a)) has zero volume because all the vectors lie in one plane. The next two
(shown in (b) and (c)) have successively larger volumes (hence the associated bases
are more orthogonal). The final parallelepiped (shown in (d)) is actually a cube,
and its associated basis is truly orthogonal. Figure 11 puts the solution in context.

1Note that this is a left-handed coordinate system.,
“Because we begin with a left-handed viewer coordinate system, we apply the left-hand rule when computing the
cross product.
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Figure 8: Basis Vector in an Interpretation Plane

Figure 9: Parallelepiped Associated with Basis Vectors

At this point a discussion of the nature of the interpretation produced by this
model is appropriate. It is a scene-centered (or object-centeredl) interpretation in
the sense of orientation; that is, it decouples the natural orientation of the scene
(or the objeet) from that of the viewer. It is a viewer-ceniered interpretation in the
sense of position; that is, the origin of the most orthogonal basis is the same as the
natural origin of the viewer (the center of projection).

2.2, Two Solutions: Which to Choose?

There are two ways to choose a most orthogonal basis: we can cither maximize or
minimize V. As mentioned above, 2 maximum V implies 2 left-handed basis, and 2
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Figure 10: An Example

12



Figure 11: The Interpretation of Figure 10d in Context

mimimum V a right-handed basis. The two solutions actually represent perceptual
reversals. Is there any reason to choose one or the other? The handedness property
is not significant because it is merely an artifact of the arbitrary direction sense of
the interpretation-plane normals.

In Figure 12, a configuration and two alternate solutions are shown. For some
reason, solution (b) does not scem to be as “good” as (a), even though, from a
strictly mathematical point-of-view, it must be. The answer is suggested in our
experiment of rotating Figure 2. The “good” solution is oriented in a way that is
consistent with our notion of vertical and horizontal, but the other one is not.

In the everyday world, the effect of gravity imparts a special meaning to the “verti-
cal” direction; similarly, while there is no unique “horizontal” direction, horizontal
lines are constrained to be perpendicular to the vertical direction. All everyday
scenes have a natural horizon, which may or may not be directly visible. Even if
it is not directly visible, the horizon is fixed by knowledge of the vertical direction,
which, presumably, is available from other visual cues and from the mechanismn
of the inner car. When we view a picture, we prefer it to be aligned so that the
natural horizon lies across the visual field normally (i.e., horizontally in the image).

13



(a} (k)

Figure 12: Two Alternate Solutions

It may be helpful to consider the relationship between the most orthogonal basis
and the concept of vanishing points and lines. It is well-known that the perspective
projections of parallel lines meet at common points in the image, called vanishing
points. It has been shown that finding a vanishing point of a line is equivalent
to finding the orientation of the line [9]. Hence, by finding the orientation of a
basis vector, we determine the vanishing point of all lines parallel to it. A close
examination of Figure 12 will show that, when the opposite edges of a side of the
parallelepiped are extended, they intersect the extended lines of the configuration at
vanishing points. Each of the two orthogonal bases therefore imply three vanishing
points. Furthermore, if two of the vanishing points can be connected by a horizontal
line (as in Figure 12(a)), the associated basis vectors can be interpreted as horizontal
in 3-dimensional space.

2.3. Consistency

Suppose a line segment is added to a right-angle illusion. In Figure 13, three
additional line segments, !, [, and I3 are shown. Lines {; and l», seem to “fit” the
rest of the illusion, while /; does not. That is, {; and /, can be interpreted as paralicl
or ncarly paralle] to at least one of the basis vectors, but /3 cannot. In terms c¢f
vanishing points, we could consider all possible vanishing points of a line. If it had
a possible vanishing point close to a vanishing point of a basis vector, it could be
interpreted as parallel or nearly parallel to the basis vector.

Accordingly, given a basis [e;, e;,e3] and a line segment / with possible interpre-
tations e(fl], we can state a estimate of I's consistency with the basis as:

C= {maa,xﬂe(ﬂ) -ef| 11 =1,2,3}.

Each element of C' is the absolute value of the cosine of the minimum possible angle
hetween one of the basis vectors and a three-dimensional line that projeets to I, il

14
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Figure 13: Consistencies of Three Lines

[ can be interpreted as being parallel to a basis vector, the corresponding element
of C will be one; otherwise, it will be less than one. The consistency values for /;,
l,, and I3 are shown in Figure 13. Note that /| is consistent with e, only, but I, is
consistent with both e; and e;. Because /5 is on the horizon, it intersects both of
the horizontal vanishing points. Line {;-is not very consistent with any basis vector.

This notion of consistency points to a way of finding the best interpretation for
a large collection of lines, only some of which form a natural basis. One approach
would be to select random triples of lines, solve for the most orthogonal basis,
calculate the consistencies of the other lines, and choose the basis that was in some
sense most consistent [10]. In the end, some lines would be inconsistent with the
chosen basis and should be interpreted as having unknown orientations. A similar
approach could be used to segment a scene into groups of lines that are related by
virtue of being consistent with a particular basis. .

It is quite possible for a configuration to lead to a most orthogonal basis that is
not actually orthogenal (for example, three line segments separated by very acute
angles, such as in Figure 4). In such a case, the method will yield a sclution with
(V| < 1. A nonorthogonal solution should probably be rejected. Of course, an
orthogonal solution may also be incorrect (in the sense that it docs not explain
three lincs 1n a scene correctly, because the lines are not really orthogonal). The
important point is that, given no more tnformation than what is included tn a single
configuration, the most orthogonal interpretation is reasonable.



3. Conclusions

The computational model presented in this paper is radically different from a
widely prevailing view (e.g., see Marr [11]) that can be paraphrased as follows:

¢ Largely static, unintelligent processes convert an image into a collection of
tokens, which comprise a discrete, explicit encoding of the information in the
image (Marr’s primal sketch).

¢ Evidence for local properties of surfaces (depth-from-viewer, orientation, cur-
vature, reflectance, etc.) is extracted from the primal sketch by more-or-
less autonomous processes (stereo, motion, shape-from-contour, shape-from-
shading, etc.). '

e This evidence is collected into a “2.5D” representation of the scene, meaning,
an integrated description of surfaces in the coordinate system of the viewer.

¢ Instances of objects are found in the 2.5D representation (e.g., generalized
cylinders}.

¢ Finally, a description of the scene is constructed in terms of these objects.

In the model presented here, there s no 2.5D sketch. Furthermore, instead of a
multiplicity of processes producing local, viewer-centered estimates, a single process
produces a partial, scene-centered representation direetly. The primal sketch retains
its role, albeit in 2 more modest form — 1t essentially reduces to line-finding. This
model is unconcerned with specific surfaces and objects. Instead, by producing a
natural basis, it estimates a global property of the entire space surrounding the
viewer.

This approach is most closely related to recent research on shape from contour
[9], [12], [13], [14]. The general idea that relates this research is to backproject
image contours onto planes of different orientations, and to choose, as the interpre-
tation, the plane that simplifies some backprojected property. Several measures of
simplicity are suggested. For example, Brady and Yuille use compactness, defined
as the ratio of the area of the backprojected contour to the square of its perimeter;
Barnard uses the uniformity of backprojected curvature; Witkin uses the degree
of uniformity of the distribution of backprojected tangent directions. The model
presented here yields interpretations not of the orientation of planes, but of space
itsell. Nevertheless, the philosophy is the same: to choose the most simple back-
projection — in this case, simple in the sense of most orthogonal.

The Gestalt view of perception holds that percepts that are simple are preferred
over those that are not. The modern version of Gestalt is that the percepts that
can be most economically encoded are the ones preferred [15]. It is interesting that
an orthogonal basis can be more economically encoded that a general one; that is,
an orthogonal basis is more redundant than a general one. An orthogonal basis
can be specified by any two of its basis vectors plus an indication of its handedness.
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A gencral basis, however, requires a complete specification of all its basis vectors.
The results in this paper are, therefore, consistent with, and lend support to, the
information-theoretic version of Gestalt theory.

Of course, the model presented here is extremely simple and can in no way be
considered a complete model of visual perception. Nevertheless, I feel that it does
illustrate an important principle that is very likely to be used in human perception.
Mucli work remains to be done to geperalize and extend the model. The discussion
of consistency in Section 2.3 points to one kind of generalization. The case of elosed
figures such as Figure 3 can be explained by an extension of the model, and this
is a topic of current research. It remains to be seen whether the approach can be
applied to curved contours and surfaces.
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A. Derivation of Functional Description of Basis Vectors

Given an interpretation plane represented by its unit normal

¢ — (¢:J ‘?bm ¢’:)
we want to find an expression for the set of unit vectors in ¢ (Figure 8):
{v=v(0):—r < @< 7}

We will develop and solve a system of three nonlinear equations in three unknowns:
the components of v.

The vector v(0) lies in the plane z = 0. We can impose an arbitrary directional

sense to # with
v(0) X v = ¢sin 6. (1)

This equation must hold, because v is perpendicular to the vector ¢. (Refer to
Figure 8 Remember that, because we use a left-handed coordinate system, we
must apply the left-hand rule for a geometric interpretation of the vector cross
product.)

Because v is a unit vector, it must satisfy

lv| = 1. | (2)

Because v iIs in the interpretation plane ¢, it must satisfy

v-¢=0. (3)

Our system of equations is (1), (2), and {3). We will solve for v by first using (1)
to get a simple expression for v,, then substituting this in {2) and (3), eliminating
vy, and finally solving the resulting quadratic equation for v,.

Let
D =,/¢:+ ¢3.

v(0) must be of the form:
1
V(O) = (B)(_q"’w ¢=?0)'
This is because it must simultaneously be in the direction
¢ X (0: 0: 1) = (—_¢W ¢'z: 0)
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and satisfy
v+l 4l =1

Expanding (1), we get
v(0) X v = ($)~8y, 82,0} X {vz, vy, v:)
= (5)Ba2z, Byv:, (—Byvy — $:02))
= (¢ sin 0, ¢, sin 4, @, sin 6).
From the first component, we obtain our expression for v,:

v, = Dsin . (4}

Substituting (4) into (2) and (3) and expanding yields
v:-i-vﬁ—{-DzsinzG: 1 (5)

and
Vz¢z + vydy + D(sin 0)p, = 0. (6)

Solving (8) for vy, substituting in (5), and collecting terms yields a quadratic in
Uyt

D*vZ + 2¢,D(sin 8)v, + D*(sin® 0)(¢5 + ¢3) — ¢} = 0. (7)

We solve this for v,

v = (Z)—gubolsin ) & \lsin® 0)936E — Dg3 T oD + 03 (9

Now that we have expressions for v, (8) and v, (4), we can easily solve for v,
using (2).

Equation (7) has two solutions; the problem of which oue to use can be resolved
by observing that equation (3) is satisfied for two interpretation planes: ¢ and —¢.
This ambiguity results in the two solutions. Since the choice between ¢ and —o is
arbitrary, we can choose one and then use the appropriate formn of ().



